6 research outputs found

    Wireless sensor networks for landslide monitoring: application and optimization by visibility analysis on 3D point clouds

    Get PDF
    Occurring in many geographical, geological and climatic environments, landslides represent a major geological hazard. In landslide prone areas, monitoring devices associated with Early Warning Systems are a cost-effective means to reduce the risk with a low environmental and economic impact, and in some cases, they can be the only solution. In this framework, particular interest has been reserved for Wireless Sensor Networks (WSNs), defined as networks of usually low-size and low-cost devices denoted as nodes, which are integrated with sensors that can gather information through wireless links. In this thesis, data from a new prototypical ground instability monitoring instrument called Wi-GIM (Wireless sensor network for Ground Instability Monitoring) have been analysed. The system consists in a WSN made by nodes able to measure their mutual inter-distances by calculating the time of flight of an Ultra-Wide Band impulse. Therefore, no sensors are implemented in the network, as the same signals used for transmission are also used for ranging. The system has been tested in a controlled outdoor environment and applied for the monitoring of the displacements of an actual landslide, the Roncovetro mudflow in Central Italy, where a parallel monitoring with a Robotic Total Station (RTS) allowed to validate the system. The outputs are displacement time series showing the distance of each couple of nodes belonging to the same cluster. Data retrieved from the tests revealed a precision of 2–5 cm and that measurements are influenced by the temperature. Since the correlation with this parameter has proved to be linear, a simple correction is sufficient to improve the precision and remove the effect of temperature. The campaign also revealed that measurements were not affected by rain or snow, and that the system can efficiently communicate up to 150 m with a 360° angle of view without affecting precision. Other key features of the implemented system are easy and quick installation, flexibility, low cost, real-time monitoring and acquisition frequency changeability. The comparison between Wi-GIM and RTS measurements pointed out the presence of an offset (in an order that vary from centimetric to decametric) constant for each single couple, due mainly to the presence of obstacles that can obstruct the Line Of Sight (LOS). The presence of vegetation is the main cause of the non-LOS condition between two nodes, which translates in a longer path of the signals and therefore to a less accurate distance measurements. To go further inside this issue, several tests have been carried out proving the strong influence of the vegetation over both data quantity and quality. To improve them, a MATLAB tool (R2018a, MAthWorks, Natick, MA, USA) called WiSIO (Wireless Sensor network Installation Optimizer) has been developed. The algorithm finds the best devices deployment following three criteria: (i) inter-visibility by means of a modified version of the Hidden Point Removal operator; (ii) equal distribution; (iii) positioning in preselected priority areas. With respect to the existing viewshed analysis, the main novelty is that it works directly with 3D point clouds, without rendering them or performing any surface. This lead to skip the process of generating surface models avoiding errors and approximations, that is essential when dealing with vegetation. A second installation of the Wi-GIM system has been therefore carried out considering the deployment suggested by WiSIO. The comparison of data acquired by the system positioned with and without the help of the proposed algorithm allowed to better comprehend the effectiveness of the tool. The presented results are very promising, showing how a simple elaboration can be essential to have more and more reliable data, improving the Wi-GIM system performances, making it even more usable in very complex environments and increasing its flexibility. The main left limitation of the Wi-GIM system is currently the precision. Such issue is connected to the aim of using only low-cost components, and it can be prospectively overcome if the system undergoes an industrialization process. Furthermore, since the system architecture is re-adaptable, it is prone to enhancements as soon as the technology advances and new low cost hardware enters the market

    A Flexible Wireless Sensor Network Based on Ultra-Wide Band Technology for Ground Instability Monitoring

    Get PDF
    An innovative wireless sensor network (WSN) based on Ultra-Wide Band (UWB) technology for 3D accurate superficial monitoring of ground deformations, as landslides and subsidence, is proposed. The system has been designed and developed as part of an European Life+ project, called Wi-GIM (Wireless Sensor Network for Ground Instability Monitoring). The details of the architecture, the localization via wireless technology and data processing protocols are described. The flexibility and accuracy achieved by the UWB two-way ranging technique is analysed and compared with the traditional systems, such as robotic total stations (RTSs) and Ground-based Interferometric Synthetic Aperture Radar (GB-InSAR), highlighting the pros and cons of the UWB solution to detect the surface movements. An extensive field trial campaign allows the validation of the system and the analysis of its sensitivity to different factors (e.g., sensor nodes inter-visibility, effects of the temperature, etc.). The Wi-GIM system represents a promising solution for landslide monitoring and it can be adopted in combination with traditional systems or as an alternative in areas where the available resources are inadequate. The versatility, easy/fast deployment and cost-effectiveness, together with good accuracy, make the Wi-GIM system a possible solution for municipalities that cannot afford expensive/complex systems to monitor potential landslides in their territory

    Integration of remote sensing and offshore geophysical data for monitoring the short-term morphological evolution of an active volcanic flank: A case study from Stromboli Island

    No full text
    The Sciara del Fuoco (SdF) collapse scar at Stromboli is an active volcanic area affected by rapid morphological changes due to explosive/effusive eruptions and mass-wasting processes. The aim of this paper is to demonstrate the importance of an integrated analysis of multi-temporal remote sensing (photogrammetry, COSMO-SkyMed Synthetic Aperture Radar amplitude image) and marine geophysical data (multibeam and side scan sonar data) to characterize the main morphological, textural, and volumetric changes that occurred along the SdF slope in the 2020–2021 period. The analysis showed the marked erosive potential of the 19 May 2021 pyroclastic density current generated by a crater rim collapse, which mobilized a minimum volume of 44,000 m3 in the upper Sciara del Fuoco slope and eroded 350,000–400,000 m3 of material just considering the shallow-water setting. The analysis allowed us also to constrain the main factors controlling the emplacement of different lava flows and overflows during the monitored period. Despite the morphological continuity between the subaerial and submarine slope, textural variations in the SdF primarily depend on different processes and characteristics of the subaerial slope, the coastal area, the nearshore, and “deeper” marine areas

    A method for locating rockfall impacts using signals recorded by a microseismic network

    Get PDF
    Abstract Background Rockfall events are one of the most dangerous phenomena that often cause several damages both to people and facilities. During recent years, the scientific community focused the attention at evaluating the effectiveness of seismological methods in monitoring these phenomena. In this work, we present a quick and practical method to locate the rebounds of some man-induced boulders falls from a landslides crown located in the Northern Apennines (Central Italy). The reconstruction of the trajectories was obtained by means of back analysis performed through a Matlab code that takes into account both the DEM (Digital Elevation Model) of the ground, the geotechnical-geophysical characteristics of the slope and the arrival times of the seismic signals generated by the rock impacts on the ground. Results The localization results have been compared with GPS coordinates of the points and videos footage acquired during the simulations, in order to assess the reliability of the method. In most cases, the retrieved impact points match with the real trajectories, showing a high reliability. Furthermore, four different cases have been identified as a function of the geomechanical, geophysical and morphological conditions. Due to the latter ones, in some case it was necessary to assume different values for the propagation velocity of the elastic waves in the ground, here assumed to be isotropic and homogeneous. Conclusions This work aims at evaluating the effectiveness of a quick and practical method to locate rockfall events using a small-aperture seismic network. The obtained results indicate that the technique can provide quantitative information about the area most prone to impact of detached blocks. The method still presents some uncertainty, but reducing some of the approximations (e.g. by better constraining the velocity model), it could lead to prompt and more accurate results, easily applicable to hazard estimates

    A method for locating rockfall impacts using signals recorded by a microseismic network

    No full text
    Background: Rockfall events are one of the most dangerous phenomena that often cause several damages bothto people and facilities. During recent years, the scientific community focused the attention at evaluating theeffectiveness of seismological methods in monitoring these phenomena. In this work, we present a quick andpractical method to locate the rebounds of some man-induced boulders falls from a landslides crown located inthe Northern Apennines (Central Italy). The reconstruction of the trajectories was obtained by means of backanalysis performed through a Matlab code that takes into account both the DEM (Digital Elevation Model) of theground, the geotechnical-geophysical characteristicsof the slope and the arrival times of the seismic signalsgenerated by the rock impacts on the ground. Results: The localization results have been compared with GPS coordinates of the points and videos footage acquiredduring the simulations, in order to assess the reliability of the method. In most cases, the retrieved impact points matchwith the real trajectories, showing a high reliability. Furthermore, four different cases have been identified as a functionof the geomechanical, geophysical and morphological conditions. Due to the latter ones, in some case it was necessaryto assume different values for the propagation velocity of the elastic waves in the ground, here assumed to be isotropicand homogeneous. Conclusions: This work aims at evaluating the effectiveness ofa quick and practical method to locate rockfallevents using a small-aperture seismic network. The obtained results indicate that the technique can providequantitative information about the area most prone toimpact of detached blocks. The method still presentssome uncertainty, but reducing some of the approximations (e.g. by better constraining the velocity model),it could lead to prompt and more accurate results, easily applicable to hazard estimates

    Geomorphology of the upper sector of the Roncovetro active landslide (Emilia-Romagna Region, Italy)

    No full text
    We present the geomorphological map of the upper sector of the Roncovetro active landslide (Enza Valley, Emilia-Romagna, Italy). The 1:1500 scale map provides an accurate picture of the landslide in October 2014. The map is mainly based on the data collected during an airborne LiDAR survey. The capability of LiDAR to ‘penetrate’ the vegetation cover makes these data the most complete and accurate topographic dataset of this landslide. The map shows that the upper sector of the Roncovetro landslide consists of gravity- and water runoff-related forms. Gravitational features are linked to sliding and flowing movements that characterize the short- and long-term behaviour of the landslide. By comparing the 2014 LiDAR-Digital Elevation Model (DEM) with the 1973 DEM provided by the Emilia-Romagna Region, we calculated that 6.2 ± 0.8 × 105 m3 of material has moved from the top of the Roncovetro landslide in about 40 years.</p
    corecore